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Abstract
The Rarita–Schwinger equation in a curved background and an external
electromagnetic field is discussed. We analyse the equation in the 2-component
spinor formalism and derive consistency conditions for them. We derive a
system of hyperbolic evolution equations together with constraints which is
equivalent to the Rarita–Schwinger equation. We show that the constraints
are not satisfied everywhere unless the consistency conditions are satisfied.
These in turn require the background to be an Einstein manifold and the
electromagnetic field to vanish.

PACS numbers: 03.65.Pm, 04.62.+v, 11.90.+t

1. Introduction

The Rarita–Schwinger equation [1] has a number of peculiar properties. In the massless case
the equation can be regarded as one of Dirac’s relativistic wave equations [2] for particles with
spin 3/2. Fierz [3, 4] had pointed out that there exist hierarchies of such equations which
describe the same one-particle states. One can move within the hierarchy by taking appropriate
derivatives. In this sense the massless Rarita–Schwinger field is related to the usual zero rest
mass field equation for spin 3/2 [5] by one derivative. Fierz also observed that in general the
solutions of these equations are not unique but only defined up to ‘gauge solutions’ which do
not contribute to the energy and angular-momentum expressions constructed from the fields.
This is the case also for the massless Rarita–Schwinger field.

A solution of the massless Rarita–Schwinger equation gives rise to such a ‘potential
modulo gauge’ description of a spin 3/2 field in close analogy to the Maxwell (i.e. the
spin 1) case, where the electromagnetic field can be obtained from a potential which itself
satisfies but is not completely determined by a field equation. There is still a gauge freedom
present which must be fixed before the potential can be uniquely determined by its field
equation.
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While the (direct) formulation for a spin 3/2 field in terms of the conventional zero
rest mass equation becomes inconsistent in any conformally curved spacetime (see, e.g., [5])
this is not so for the ‘potential modulo gauge’ description. Here again there are consistency
conditions to be satisfied but in this case they involve only the Ricci tensor. This is a remarkable
fact because the Rarita–Schwinger equation seems to be the only system of spinor equations
where only the Ricci tensor appears in the obstruction to consistency. Thus, the vacuum
Einstein equations can be considered as being ‘integrability conditions’ for the massless
Rarita–Schwinger equation. This observation has been one motivation for an attempt to
reconcile twistor theory with arbitrary (vacuum) spacetimes [6]. It also plays a fundamental
role in the theory of super-gravity.

The massive case has been studied by various authors, in particular, by Velo and Zwanziger
[7] who discuss the massive Rarita–Schwinger field coupled to an external electromagnetic
field and by Madore [8] who in addition coupled the field to a linearized gravitational field.
Their result is that in these circumstances the Rarita–Schwinger field seems to propagate
acausally in the sense that the characteristics of the equation become space-like so that
information about the field configuration can travel at speeds larger than the speed of light.
This effect has been termed the ‘Velo–Zwanziger phenomenon’.

In this paper we offer another analysis of the massive Rarita–Schwinger equations on a
curved background in an exterior electromagnetic field. The plan of the paper is as follows.
We start in section 2 by first translating the equations into the 2-component spinor formalism
decomposing fields and equations into irreducible parts. The purpose of this somewhat lengthy
exercise is to separate cleanly the various parts of the field in order to track their propagation
properties individually.

Next, in section 3 we derive Buchdahl conditions for solutions of the Rarita–Schwinger
equation. These are relations which necessarily hold between the solutions and the external
fields such as the curvature of the background manifold or an external electromagnetic field.
It will turn out that the Buchdahl conditions require that for consistency the manifold has to
be an Einstein manifold and that there cannot be an external electromagnetic field. This is
in contrast to earlier results because it implies that there is no Velo–Zwanziger phenomenon
because one simply cannot couple the field consistently to an electromagnetic field in the first
place.

Then, in section 4 we derive the 3 + 1 decomposition of these equations in the special
case of flat Minkowski spacetime and vanishing electromagnetic field using the space-spinor
formalism. We derive a system of symmetric hyperbolic evolution equations together with
constraints. We find that the evolution system is underdetermined in the sense that there is a
part of the field which is not determined by the evolution. Since this part is also not present in
the constraints this implies that it can be specified freely which we take as an indication that
the Rarita–Schwinger equation does not determine a unique solution. This arbitrariness can
be interpreted in the case of massless fields as a gauge transformation of the kind discussed
by Fierz. In the massive case, this is not possible.

We also discuss, in section 5, the propagation equations for the constraints. It will turn out
that, in the massive case, the constraints do not propagate even in flat space without external
electromagnetic fields unless the arbitrariness in the fields is fixed which amounts to switching
to the Dirac formulation of the spin 3/2 field. Since the condition which arises is exactly the
one coming from the Buchdahl condition for the special case of flat space but non-vanishing
electromagnetic field we argue, that in the general case the constraints will propagate only,
if the Buchdahl condition is satisfied. The propagation of the constraints is necessary for the
well posedness of the Rarita–Schwinger system because only if we have this property are we
able to conclude that a solution of the evolution equations evolved from initial values which
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satisfy the constraints will satisfy the constraints also at any later time. If this is not the case,
then we do not have a solution of the entire Rarita–Schwinger system and hence there is no
well posedness.

We conclude the paper with a short summary of our conclusions.

2. Translation to 2-component spinors

The Rarita–Schwinger equation [1] in an external electromagnetic field was formulated in [7]
in terms of Dirac spinors:

(i � · ∇ − B)a
dψd = 0. (1)

Here, ψd is a 1-form taking values in a ‘charged bundle’ of Dirac spinors over spacetime M.
This is the usual Dirac bundle equipped with an action of the group U(1). Correspondingly, the
spacetime connection, denoted by Da , is promoted to a ‘charged connection’ ∇a by ‘minimal
coupling’, ∇a = Da − i eAa . In (1) the differential operator is given by the term

i � · ∇ = i γ 5εab
cd∇cγ

b. (2)

In order to derive and discuss the consistency conditions for this equation it is useful to translate
it first into the formalism of 2-component spinors as presented in [5]. Note that we use these
conventions throughout the paper.

We represent the Dirac spinor valued 1-form ψd as

ψd =
(

φDD′S

χDD′S ′

)
. (3)

The Dirac matrices are represented in the form given in [5] as1

γa =
√

2

(
0 εARεA′S

′

εA′R′εA
S 0

)
γ 5 =

(−i εR
S 0

0 i εR′ S
′

)
. (4)

The mass term in (1) is given by B = Ba
b = mγa

b where γab are the matrices

γab = 1
2 (γaγb − γbγa). (5)

Represented in terms of 2-component spinors these matrices read

γab = 2

(
εA′B ′εR(AεB)

S 0
0 εABεR′(A′εB ′)

S ′

)
. (6)

Inserting these representations into (1) we obtain after some calculation the system of equations

∇AB ′χBA′B
′ − ∇BA′χAB ′B

′ = mφA′AB

∇BA′φB ′A
B − ∇AB ′φA′B

B = mχAA′B ′ .

Note, that in the case m = 0 the two equations decouple. If we assume for the moment
that the spacetime is Minkowski space and that there is no electromagnetic field present then
it is obvious that there is an arbitrariness in these equations. We are free to replace χAA′B ′

and φAA′B with χAA′B ′ + ∇AA′χB ′ and φAA′B + ∇AA′φB for arbitrary spinor fields χB ′ and φB

without changing the equations. Thus, whenever χAA′B ′ and φAA′B are solutions then so are
χAA′B ′ + ∇AA′χB ′ and φAA′B + ∇AA′φB . This is a well-known property of the massless Rarita–
Schwinger equations [2, 3, 6, 9]. It implies that a solution of the equations for m = 0 can
1 Note that the Clifford relation obeyed by the Dirac matrices used in [7] and [5] differ by a sign. This is compensated
for in the formulae.



8436 J Frauendiener

be determined only up to gauge transformations of the above form and the equations can be
regarded as determining a spin 3/2 field in a ‘potential modulo gauge’ description.

In the case m �= 0 the same replacement does not yield a new solution because now the
condition that the changed fields be again a solution implies that χB ′ has to be covariantly
constant. And this, in turn, implies that the fields remain in fact unchanged. So in this case
there is no notion of a field being given by a potential modulo gauge description.

The final step in rewriting the Rarita–Schwinger equation is to decompose the fields and
the equations into irreducible parts. Thus, we write

φAA′B = σA′AB + εABσA′

χAA′B ′ = τAA′B ′ + εA′B ′τA

where now the fields σAA′B and τAA′B ′ are symmetric in their last pair of indices. Then we
obtain the following system of spinor equations:

∇B ′(AτB)A′B
′ − ∇A′(AτB) = mσA′AB (7)

∇BB ′τBB ′
A′ + 3∇BA′τB = −6 mσA′ (8)

∇B(A′σB ′)A
B − ∇A(A′σB ′) = mτAA′B ′ (9)

∇BB ′σB ′B
A + 3∇AB ′σB ′ = −6 mτA. (10)

This is the set of equations we will analyse in the following sections.

3. Consistency conditions

Before we analyse the Rarita–Schwinger system in terms of hyperbolic evolution equations
and constraints we derive the so-called Buchdahl conditions. These relations between fields
and external quantities arise when we try to impose a system of equations on an arbitrarily
curved manifold and for a given exterior electromagnetic field. To this end we take further
covariant derivatives of the equations, commute them in order to introduce curvature terms
and try to eliminate all derivatives of the fields. If this is possible we will end up with an
algebraic relation between the fields, the curvature and the exterior electromagnetic field.

For later convenience we introduce the notation

[∇AA′,∇BB ′ ] = εAB�A′B ′ + εA′B ′�AB (11)

where the curvature derivations �AB and �A′B ′ here also contain the electromagnetic field
Fab = εABFA′B ′ + εA′B ′FAB . Explicitly, we have for any spinor κC (see [5])

�ABκC = −
ABC
DκD + 2�εC(AκB) + i eFABκC

�A′B ′κC = −�A′B ′C
EκE − i eFA′B ′κC.

We first take a derivative of (7).

m∇C
A′

σA′BA = ∇C
A′∇B ′(AτB)A′ B

′ − ∇C
A′∇A′(AτB)

= −εC(A�A′B ′
τB)A′B ′ + ∇B ′(A∇C

A′
τB)A′ B

′
+ ∇CA′∇A′

(AτB)

= −εC(A�A′B ′
τB)A′B ′ + 1

2∇AB ′
[∇C

A′
τBA′B

′]
+ 1

2∇BB ′
[∇C

A′
τAA′B

′]
+ 1

2εC(A�τB) + �C(BτA).
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Now we use (7) and (8) to obtain

m∇C
A′

σA′BA = −εC(A�A′B ′
τB)A′B ′ + 1

2εC(A�τB) + �C(BτA)

+ 1
2∇AB ′

[−∇B ′
(CτB) − mσB ′

BC − 3εBC

(
mσB ′

+ ∇D
B ′

τD
)]

+ 1
2∇BB ′

[−∇B ′
(CτA) − mσB ′

AC − 3εAC

(
mσB ′

+ ∇D
B ′

τD
)]

= −εC(A�A′B ′
τB)A′B ′ + 1

2εC(A�τB) + �C(BτA) − 1
4εA(C�τB) − 1

2�A(CτB)

− 1
2m∇AB ′σB ′

BC − 3
2εBC

(
m∇AB ′σB ′

+ ∇B ′A∇B ′
DτD

) − 1
4εB(C�τA)

− 1
2�B(CτA) − 1

2m∇BB ′σB ′
AC − 3

2εAC

(
m∇BB ′σB ′

+ ∇BB ′∇B ′
DτD

)
.

Collecting appropriate terms we get

m∇C
A′

σA′BA + m∇B ′(BσB ′
A)C − 3mεC(A∇B)B ′σB ′

= −εC(A�A′B ′
τB)A′B ′ + 3

4εC(A�τB) − 1
2�ABτC

+ 1
2�C(AτB) + 3

2εC(A∇B)B ′∇B ′
DτD

= −εC(A�A′B ′
τB)A′B ′ + 3

4εC(A�τB) − 1
2�ABτC − 3

4εC(A�τB) + 3
2εC(A�B)DτD

= −εC(A�A′B ′
τB)A′B ′ − 2�ABτC + 2�C(AτB).

Rewriting the left-hand side yields

−mεC(B

(∇B ′DσB ′A)D + 3∇A)B ′σB ′) = −εC(A�A′B ′
τB)A′B ′ − 2�ABτC + 2�C(AτB). (12)

Using (10) we get

6m2εC(BτA) = −εC(A�A′B ′
τB)A′B ′ − 2�ABτC + 2�C(AτB). (13)

This expression is equivalent to its contraction so we finally obtain

HA ≡ �A′B ′
τAA′B ′ − 2�ABτB + 6m2τA = 0. (14)

We could also have taken a derivative of (8) and gone through the same procedure. Then we
would have ended up with exactly the same relation as above. Introducing now the explicit
form of the curvature derivations we obtain the consistency conditions

HA = −�A
BA′B ′

τBA′B ′ + 6�τA − i eFA′B ′
τAA′B ′ + 2i eFABτB + 6m2τA = 0. (15)

This relation couples the values of the fields τA and τAA′B ′ with the curvature and the extrinsic
electromagnetic field if there should be one. A similar relation holds for the fields σA′ and
σAA′B . This relation can be obtained formally by complex conjugating (15) and then replacing
τ̄A′AB and τ̄A′ by σAA′B and σA′ , respectively. This yields

KA′ ≡ �ABσAA′B − 2�A′B ′σB ′
+ 6m2σA′ = 0. (16)

It is not immediately obvious that such relations should exist because this depends very much
on the detailed structure of the equation in question.

Let us now discuss relation (15) for various special cases. Suppose we are in Minkowski
space and suppose that (7)–(10) hold. Since all the commutators vanish we necessarily recover
the condition

6m2τB = 0. (17)

Thus, either we have m2 = 0 or τB = 0. So if we insist on a massive field then this field
cannot have a component τB and the spinor field χBB ′A′ must be symmetric in its last pair of
indices. On the other hand, in the massless case, we may admit the part τB but it does not play
a role. Instead it corresponds to the gauge freedom discussed in section 2.
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Focussing now on a massive field in a general spacetime with an electromagnetic field we
require τB = 0 because this is necessary even in the flat case. Now (15) reduces to

0 = �A
BA′B ′

τBA′B ′ + i eFA′B ′
τAA′B ′

which has to hold for all values of the field τBA′B ′ . This is a severe algebraic restriction on
the field and/or the electromagnetic and curvature fields. At any point in spacetime we can
arrange for the field τBA′B ′ to take arbitrary values which implies that at any point we have
�ABA′B ′ + i eFA′B ′εAB = 0 which in turn implies that

(i) the spacetime is an Einstein manifold, �ABA′B ′ = 0,
(ii) the electromagnetic field vanishes, FAB = 0.

While the first consequence is familiar from the massless case, the second consequence is new.
It implies that it is impossible to couple a Rarita–Schwinger field to an electromagnetic field in
a consistent way. This result is independent of the curvature of the spacetime, i.e. even in a flat
background one cannot have an electromagnetic field present. Note, that the requirement that
τB should vanish is not strictly necessary if the scalar curvature of the spacetime is a non-zero
constant. Then it is possible to have m2 + � = 0 with non-vanishing τB. However, this does
not change the above conclusions.

4. 3 + 1 decomposition

In this section we will study the Rarita–Schwinger system from the point of view of the initial
value problem. We want to derive a system of evolution equations and constraints which will
be satisfied by any solution of the Rarita–Schwinger system and vice versa.

In order to find the basic propagation properties of this system of equations we need to
perform a 3 + 1-splitting of the system. This is done as usual using the space-spinor formalism
[10] (or [11] where this formalism has been applied in the massless case). To this end we fix a
time-like vector field na, normalized by nan

a = 2, so that nAA′nBA′ = εA
B . We use this vector

field to ‘convert the primed indices to unprimed ones’. Thus, for instance, we write the field
τAA′B ′ as

nC
A′

nB
B ′

τAA′B ′ = tABC + 2εA(CtB) (18)

where tABC is totally symmetric in all its indices. Similarly, the field σA′AB yields two
irreducible parts sABC and sA and we set σA = nA

A′
σA′ . The derivative operator ∇AA′ can be

written in the form

∇AA′ = nAA′∂ − nA′C∂AC ⇐⇒ nB
A′∇AA′ = εAB∂ + ∂AB.

It is enough for our purposes to assume that the underlying spacetime is Minkowski space
but we will allow the presence of an additional external electromagnetic field. Then we can
arrange for the time-like vector field na to be covariantly constant. This has the consequence
that all derivatives of the vector field vanish.

Inserting these decompositions into ((7)–(10)) yields six equations which we group into
four evolution equations

∂tABC + ∂(A
DtBC)D − ∂(AB(tC) − τC)) = −msABC (19)

∂(tA + τA) − 1
3∂AB(tB + τB) − 2

3∂AB(tB − τB) = m(sA − σA) (20)

∂sABC − ∂(A
DsBC)D + ∂(AB(sC) − σC)) = mtABC (21)

∂(sA + σA) + 1
3∂AB(sB + σB) + 2

3∂AB(sB − σB) = −m(tA − τA) (22)
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and two constraint equations

0 = TA ≡ ∂BCtBCA + 2∂AB(tB + τB) + 3m(σA + sA) (23)

0 = SA ≡ ∂BCsBCA + 2∂AB(sB + σB) + 3m(tA + τA). (24)

We note that in the case of a general curved background manifold we would have obtained
equations with the same principal part but with additional lower order terms containing the
derivatives of the time-like evolution vector na .

Now we can see the peculiar behaviour of this system:

• We only get propagation equations for the sums tA + τA and sA +σA while the differences
tA − τA and sA − σA do not evolve. Since they are not present in the constraints either
we have to conclude that they are not determined by the system. We are free to specify
them arbitrarily during the course of the evolution. This suggests that these combinations
are not physically meaningful quantities.

• The evolution equations, now regarded as equations for tABC and tA + τA, respectively for
sABC and sA + σA, are symmetric hyperbolic which is easily verified. The characteristics
for equations (19) and (21) are the light cone and a time-like cone in the interior of
the light cone, which is also the characteristic for equations (20) and (22). Therefore,
for any arbitrary choice of the difference fields the Cauchy problem for the evolution
equations is well posed. The propagation of the fields is causal in the sense that there is
no superluminal propagation speed.

However, if we do not regard the difference fields as being fixed but instead try to
couple them to the propagating fields then we will change the characteristics. For example
imposing the condition that the difference fields should be linearly dependent on the sum
of the fields changes the characteristics in an almost arbitrary way. This should be taken
as an additional hint that the difference of the fields is in a sense an unphysical feature of
the equations.

• We have seen earlier from the consistency relations that the components τA and σA′ should
vanish for a massive field. We could also require these fields to vanish here, thereby
fixing the arbitrariness in the evolution. However, this will not change the conclusions.
Furthermore, we consider this to be an artificial procedure because there is no intrinsic
way to achieve this, e.g., by choosing appropriate initial conditions. Putting these fields
to zero essentially amounts to switching from the Rarita–Schwinger formulation to the
Dirac formulation of the spin 3/2 equation [2].

• In the case m = 0 the equations decouple into two sets consisting of two evolution
equations and one constraint each. Let us consider the three equations (19), (20) and
(23). Here again, the difference tA − τA is not determined by the equations. The gauge
transformation mentioned in section 2 now translates into the transformations

tABC �→ tABC + ∂(ABχC)

tA �→ tA − 3
2∂χA + 1

2∂ABχB

τA �→ −τA − ∂χA + ∂ACχC.

One can use this gauge transformation to make τA = 0 (so that the original field χAA′B ′

is symmetric in its primed indices). This yields a system of two evolution equations and
one constraint equation which has a well-posed Cauchy problem (see, e.g., [11]). In this
way the indeterminacy in the system can be circumvented and one can still make sense
of the equations. This argument can be generalized to Ricci flat spacetimes.
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5. Propagation of constraints

The Rarita–Schwinger system is equivalent to the combined system of evolution and constraint
equations derived above. Therefore, a solution of the Rarita–Schwinger system has to satisfy
the constraint equations at each instant of time. We necessarily have to satisfy the constraints
initially to provide the initial data for the evolution equations. But we need to verify that each
solution of the constraints will be propagated by the evolution into another solution of the
constraints. If this was not the case, then a solution of the evolution equations would violate
the constraints even if it satisfied them initially.

The usual way to show the propagation of the constraints is to derive a subsidiary system
of evolution equations for the constraints (i.e. for those fields whose vanishing amounts to the
imposition of the constraints) which has the zero fields as a solution and for which uniqueness
of solutions for given initial data holds. Then one can conclude that the constraints are
propagated in the above sense.

We will now derive the system of equations satisfied by the fields TA and SA. Because these
calculations are rather cumbersome we restrict ourselves to the special case already mentioned
above where we assume the manifold to be flat but allow for an external electromagnetic field.
This case is in a sense complementary to the one discussed in [11] where it was assumed that
the manifold is curved but no electromagnetic field was admitted.

To do the calculation one needs to know the commutators between the derivative operators
∂ and ∂AB . These are given by

[∂, ∂AB] = 1
2 (�̂AB − �AB)

∂C(A∂B)
C = 1

2 (�̂AB + �AB).

Here we have defined �̂AB = nA
A′

nB
B ′�A′B ′ , the space-spinor equivalent of the primed

curvature derivation. In the present case, these derivations contain only the electromagnetic
field strength. In the general case they would also contain terms of the form K · ∂ where K
stands for a derivative of na and ∂ is one of the derivative operators.

Taking a time derivative of TA, commuting derivatives and using the evolution equations
and the expressions for the commutators we arrive after some calculation at the equations

∂TA − 1
3∂ABT B + mSA = �̂BCtABC + 2�̂ABtB − 2�ABτB + 6m2τA

∂SA + 1
3∂ABSB + mTA = �BCsABC + 2�ABsB − 2�̂ABσB + 6m2σA.

Consider now again expressions (14) and (16). Written in terms of space-spinors we have

HA = �̂CDtACD + 2�̂ABtB − 2�ABτB + 6m2τA (25)

KA = �CDsACD + 2�ABsB − 2�̂ABσB + 6m2σA. (26)

So the propagation equations for the constraints have the form

∂TA − 1
3∂ABT B + mSA = HA (27)

∂SA + 1
3∂ABSB − mTA = −KA. (28)

We have obtained these equations with the additional assumption that the time-like vector na

should be covariantly constant. However, the general equations would have had the same
properties. In particular, the principal parts and the right-hand sides would have been the
same. The only difference would have been some additional low order terms on the left-hand
side involving the derivatives of na multiplied by SA or TA (see [11] for these equations in the
massless case on a curved background).
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6. Discussion and conclusion

The system (27) and (28) of propagation equations is symmetric hyperbolic. For vanishing
right-hand sides it is also homogeneous. In that case we can conclude by standard arguments
that the unique solution for vanishing initial data is the zero solution. This means that if
we start with data for the evolution equations (19)–(22) which satisfy the constraints, i.e. for
which TA = 0 and SA = 0, then we will obtain TA = 0 = SA everywhere, i.e. the constraints
will be satisfied at all times.

However, the obstruction to this conclusion is exactly the consistency conditions HA = 0
and KA = 0. Only when these are satisfied do we get the vanishing of the constraints
everywhere. This implies that only in that case the Rarita–Schwinger system has a well-posed
Cauchy problem in the sense of a hyperbolic system of evolution equations together with
propagating constraints, i.e. only when the consistency conditions are satisfied. Therefore,
only in that case there exists a solution of the Rarita–Schwinger system.

However, the consistency conditions require the background manifold to be an Einstein
manifold and the external electromagnetic field to vanish. So we arrive at the conclusion that
a spin 3/2 field cannot be coupled consistently to an external electromagnetic field because
this would violate the Buchdahl conditions. It can live on an Einstein spacetime for which the
curvature scalar is related to the mass of the field by � = −m2. In particular, a massless field
can only exist on a vacuum spacetime.

How can we understand that there is no consistent coupling of the Rarita–Schwinger
field to the electro-magnetic spin 1 field even though it can be coupled consistently to the
gravitational field, i.e. the Weyl curvature which has spin 2? One would have expected that
problems come with higher spin. Clearly, the explanation has to be the algebraic structure
of the field. The fact, that the Rarita–Schwinger field contains parts which have mixed index
type but at most two indices of the same kind allows the Weyl spinor to ‘slip through’ so that
it does not appear in the consistency conditions (this would be different if there were more
than two indices of one kind). All the other curvature and electromagnetic fields are coupled
to the Rarita–Schwinger field in the consistency conditions and, therefore, are restricted. So
the question is not whether we have low spin or high spin, but depends crucially on exactly
which representations are present in the spinor field.

The earlier results in [8] and [7] suggest that the Rarita–Schwinger equation has solutions
when coupled to an external field but that there are modes which propagate acausally. They
seem to have been obtained by focussing on the evolution equations and fixing the relationship
of the free difference fields in a certain way which changes the characteristics. However,
it seems to have been ignored to check for the propagation of the constraints. The present
result implies that there is no ‘Velo–Zwanziger phenomenon’ because a Rarita–Schwinger
field cannot exist in an external electromagnetic field.
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